Ashlyn Wilson ${ }^{1}$,
Joseph M. Orr¹,2
${ }^{1}$ Psychological and Brain Sciences
${ }^{2}$ Texas A\&M Institute for Neuroscience

Introduction

- Frequent media multitasking was initially linked to decreased executive functioning, but findings are now mixed.
- Unlike most lab-based multitasking paradigms, real-world multitasking allows people to choose if/when to multitask.
- We recently developed a version of a multitasking paradigm where participants have voluntary control of when to switch.
- Eye tracking was used to obtain continuous measures of task engagement and decisionmaking processes to gain additional insights into multitasking choices.
- Linear mixed models were used to examine 'dwell time' on Areas of Interest (AOI) for the math problem and the popup.

Methods

- 91 participants

- Primary task: math verification, 3 points for correct
- Distractor popup: during the primary task a popup with an encouraging message appeared on $1 / 3$ of trials
- Switch popup: during the primary task a popup signaling an available secondary task appeared on $1 / 3$ of trials.
- The popup showed points available for secondary task, ranging from $10-25$ points.
- The secondary task was a word-stem completion task.
- Tobii Fusion Pro (120 Hz) was used to collect eye position and pupil dilation.

Discussion

- Eye-tracking in combination with voluntary multitasking allows us to observe continuous measurements of engagement and attention.
- Preliminary results show reaction time distraction effects.
- Preliminary results show no effect of condition on primary task dwell time and no effect on the association between dwell time and reaction time.
- There is a difference in how often participants switched, but further data is needed to allow for individual difference comparisons
- Next steps: Examining how reward responsiveness affects reaction time and points.

More Information

Ashlyn Wilson

Ashlyngrace@tamu.edu
Joseph M. Orr:
joseph.orr@tamu.edu
Website:
www.congalab.com

